D2 and D3 dopamine receptor cell surface localization mediated by interaction with protein 4.1N.

نویسندگان

  • Alicia V Binda
  • Nadine Kabbani
  • Ridwan Lin
  • Robert Levenson
چکیده

We identified protein 4.1N as a D2-like dopamine receptor-interacting protein in a yeast two-hybrid screen. Protein 4.1N is a neuronally enriched member of the 4.1 family of cytoskeletal proteins, which also includes protein 4.1R of erythrocytes and the 4.1G and 4.1B isoforms. The interaction of protein 4.1N was specific for the D2 and D3 dopamine receptors and was independently confirmed in pulldown and coimmunoprecipitation assays. Deletion mapping localized the site of dopamine receptor/protein 4.1N interaction to the N-terminal segment of the third intracellular domain of D2 and D3 receptors and the carboxyl-terminal domain of protein 4.1N. D2 and D3 receptors were also found to interact with the highly conserved carboxyl-terminal domain of proteins 4.1R, 4.1G, and 4.1B. Immunofluorescence studies show that protein 4.1N and D2 and D3 dopamine receptors are expressed at the plasma membrane of transfected human embryonic kidney 293 and mouse neuroblastoma Neuro2A cells. However, expression of D2 or D3 receptors with a protein 4.1N truncation fragment reduces the level of D2 and D3 receptor expression at the plasma membrane. These results suggest that protein 4.1N/dopamine receptor interaction is required for localization or stability of dopamine receptors at the neuronal plasma membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dopamine D2 and D3 receptors are linked to the actin cytoskeleton via interaction with filamin A.

We have used a yeast two-hybrid approach to uncover protein interactions involving the D2-like subfamily of dopamine receptors. Using the third intracellular loop of the D2S and D3 dopamine receptors as bait to screen a human brain cDNA library, we identified filamin A (FLN-A) as a protein that interacts with both the D2 and D3 subtypes. The interaction with FLN-A was specific for the D2 and D3...

متن کامل

Regulation of AMPA receptor GluR1 subunit surface expression by a 4. 1N-linked actin cytoskeletal association.

The synaptic localization, clustering, and immobilization of neurotransmitter receptors and ion channels play important roles in synapse formation and synaptic transmission. Although several proteins have been identified that interact with AMPA receptors and that may regulate their synaptic targeting, little is known about the interaction of AMPA receptors with the cytoskeleton. In studies exam...

متن کامل

A review of the role of dopamine receptors and novel therapeutic strategies in non-small cell lung cancer (NSCLC)

Lung cancer is a very aggressive and most deadly cancer in both men and women. Lung cancer is divided into two types of small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC is divided into 3 subgroups: adenocarcinoma (AC), squamous cell carcinoma (SqCC) and large cell carcinoma (LCC). Dopamine is involved in controlling motions, cognition, emotions, memory and reward mech...

متن کامل

Characterization of a chimeric human dopamine D3/D2 receptor functionally coupled to adenylyl cyclase in Chinese hamster ovary cells.

Dopamine D3 receptor pharmacology differs from that of the dopamine D2 receptor despite a high degree of receptor sequence similarity. The greatest divergence of the primary sequences of D3 and D2 receptors occurs in the predicted third intracellular loops of the receptors, a region implicated in G protein binding and function. To determine whether this domain specifies the distinct ligand bind...

متن کامل

Protein-protein coupling/uncoupling enables dopamine D2 receptor regulation of AMPA receptor-mediated excitotoxicity.

here is considerable evidence that dopamine D2 receptors can modulate AMPA receptor-mediated neurotoxicity. However, the molecular mechanism underlying this process remains essentially unclear. Here we report that D2 receptors inhibit AMPA-mediated neurotoxicity through two pathways: the activation of phosphoinositide-3 kinase (PI-3K) and downregulation of AMPA receptor plasma membrane expressi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 62 3  شماره 

صفحات  -

تاریخ انتشار 2002